Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 771
Filtrar
1.
Methods Mol Biol ; 2787: 209-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656492

RESUMO

Coffea spp. is the source of one of the most widely consumed beverages in the world. However, the cultivation of this crop is threatened by Hemileia vastatrix Berk & Broome, a fungal disease, which reduces the productivity and can cause significant economic losses. In this protocol, coffee leaf segment derived from a chemical mutagenesis process are inoculated with uredospores of the pathogen. Subsequently, the gene expression changes are analyzed over the time (0, 5, 24, 48, and 120 h) using quantitative real-time polymerase chain reaction (RT-qPCR). The procedures and example data are presented for expression analysis in the CaWRKY1 gene. This procedure can be applied for quantitative analysis of other genes of interest to coffee breeders and scientists for elucidating the molecular mechanisms involved in the interaction between the plant and pathogen, potentially leading to the development of more efficient approaches for managing this disease.


Assuntos
Basidiomycota , Coffea , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Coffea/microbiologia , Coffea/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Perfilação da Expressão Gênica/métodos , Mutação , Folhas de Planta/microbiologia , Folhas de Planta/genética , Interações Hospedeiro-Patógeno/genética
3.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163217

RESUMO

Pathogenesis-related 1 (PR-1) proteins, which are defense proteins in plant-pathogen interactions, play an important role in the resistance and defense of plants against diseases. Blister blight disease is caused by Exobasidium vexans Massee and a major leaf disease of tea plants (Camellia sinensis (L.) O. Kuntze). However, the systematic characterization and analysis of the PR-1 gene family in tea plants is still lacking, and the defense mechanism of this family remains unknown. In this study, 17 CsPR-1 genes were identified from the tea plant genome and classified into five groups based on their signal peptide, isoelectric point, and C-terminus extension. Most of the CsPR-1 proteins contained an N-terminal signal peptide and a conserved PR-1 like domain. CsPR-1 genes comprised multiple cis-acting elements and were closely related to the signal-transduction pathways involving TCA, NPR1, EDS16, BGL2, PR4, and HCHIB. These characteristics imply an important role of the genes in the defense of the tea plant. In addition, the RNA-seq data and real-time PCR analysis demonstrated that the CsPR-1-2, -4, -6, -7, -8, -9, -10, -14, -15, and -17 genes were significantly upregulated under tea blister-blight stress. This study could help to increase understanding of CsPR-1 genes and their defense mechanism in response to tea blister blight.


Assuntos
Basidiomycota/patogenicidade , Camellia sinensis/genética , Doenças das Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Camellia sinensis/metabolismo , China , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma/genética
4.
Phytopathology ; 112(5): 1093-1102, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34732078

RESUMO

All native North American white pines are highly susceptible to white pine blister rust (WPBR) caused by Cronartium ribicola. Understanding genomic diversity and molecular mechanisms underlying genetic resistance to WPBR remains one of the great challenges in improvement of white pines. To compare major gene resistance (MGR) present in two species, southwestern white pine (Pinus strobiformis) Cr3 and limber pine (P. flexilis) Cr4, we performed association analyses of Cr3-controlled resistant traits using single nucleotide polymorphism (SNP) assays designed with Cr4-linked polymorphic genes. We found that ∼70% of P. flexilis SNPs were transferable to P. strobiformis. Furthermore, several Cr4-linked SNPs were significantly associated with the Cr3-controlled traits in P. strobiformis families. The most significantly associated SNP (M326511_1126R) almost colocalized with Cr4 on the Pinus consensus linkage group 8, suggesting that Cr3 and Cr4 might be the same R locus, or have localizations very close to each other in the syntenic region of the P. strobiformis and P. flexilis genomes. M326511_1126R was identified as a nonsynonymous SNP, causing amino acid change (Val376Ile) in a putative pectin acetylesterase, with coding sequences identical between the two species. Moreover, top Cr3-associated SNPs were further developed as TaqMan genotyping assays, suggesting their usefulness as marker-assisted selection (MAS) tools to distinguish genotypes between quantitative resistance and MGR. This work demonstrates the successful transferability of SNP markers between two closely related white pine species in the hybrid zone, and the possibility for deployment of MAS tools to facilitate long-term WPBR management in P. strobiformis breeding and conservation.


Assuntos
Resistência à Doença , Pinus , Doenças das Plantas , Basidiomycota/patogenicidade , Resistência à Doença/genética , Pinus/genética , Pinus/microbiologia , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Genes (Basel) ; 12(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34828395

RESUMO

The biotrophic fungal pathogen Ustilago maydis causes common smut in maize, forming tumors on all aerial organs, especially on reproductive organs, leading to significant reduction in yield and quality defects. Resistance to U. maydis is thought to be a quantitative trait, likely controlled by many minor gene effects. However, the genes and the underlying complex mechanisms for maize resistance to U. maydis remain largely uncharacterized. Here, we conducted comparative transcriptome and metabolome study using a pair of maize lines with contrast resistance to U. maydis post-infection. WGCNA of transcriptome profiling reveals that defense response, photosynthesis, and cell cycle are critical processes in maize response to U. maydis, and metabolism regulation of glycolysis, amino acids, phenylpropanoid, and reactive oxygen species are closely correlated with defense response. Metabolomic analysis supported that phenylpropanoid and flavonoid biosynthesis was induced upon U. maydis infection, and an obviously higher content of shikimic acid, a key compound in glycolysis and aromatic amino acids biosynthesis pathways, was detected in resistant samples. Thus, we propose that complex gene co-expression and metabolism networks related to amino acids and ROS metabolism might contribute to the resistance to corn smut.


Assuntos
Metaboloma , Imunidade Vegetal , Transcriptoma , Zea mays/genética , Basidiomycota/patogenicidade , Regulação da Expressão Gênica de Plantas , Glicólise , Estresse Oxidativo , Zea mays/metabolismo , Zea mays/microbiologia
6.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830140

RESUMO

The smut fungus Ustilago esculenta infects Zizania latifolia and induces stem expansion to form a unique vegetable named Jiaobai. Although previous studies have demonstrated that hormonal control is essential for triggering stem swelling, the role of hormones synthesized by Z. latifolia and U. esculenta and the underlying molecular mechanism are not yet clear. To study the mechanism that triggers swollen stem formation, we analyzed the gene expression pattern of both interacting organisms during the initial trigger of culm gall formation, at which time the infective hyphae also propagated extensively and penetrated host stem cells. Transcriptional analysis indicated that abundant genes involving fungal pathogenicity and plant resistance were reprogrammed to maintain the subtle balance between the parasite and host. In addition, the expression of genes involved in auxin biosynthesis of U. esculenta obviously decreased during stem swelling, while a large number of genes related to the synthesis, metabolism and signal transduction of hormones of the host plant were stimulated and showed specific expression patterns, particularly, the expression of ZlYUCCA9 (a flavin monooxygenase, the key enzyme in indole-3-acetic acid (IAA) biosynthesis pathway) increased significantly. Simultaneously, the content of IAA increased significantly, while the contents of cytokinin and gibberellin showed the opposite trend. We speculated that auxin produced by the host plant, rather than the fungus, triggers stem swelling. Furthermore, from the differently expressed genes, two candidate Cys2-His2 (C2H2) zinc finger proteins, GME3058_g and GME5963_g, were identified from U. esculenta, which may conduct fungus growth and infection at the initial stage of stem-gall formation.


Assuntos
Basidiomycota/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Doenças das Plantas/genética , Tumores de Planta/genética , Poaceae/genética , Sequência de Aminoácidos , Basidiomycota/metabolismo , Basidiomycota/patogenicidade , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Hifas/genética , Hifas/metabolismo , Hifas/patogenicidade , Ácidos Indolacéticos/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Tumores de Planta/microbiologia , Poaceae/metabolismo , Poaceae/microbiologia , Homologia de Sequência de Aminoácidos , Virulência/genética
7.
Viruses ; 13(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835075

RESUMO

Partitiviruses are one of the most prevalent double-stranded RNA viruses that have been identified mostly in filamentous fungi and plants. Partitiviruses generally infect host fungi asymptomatically but infrequently exert significant effect(s) on morphology and virulence, thus being considered a potential source of biological control agents against pathogenic fungi. In this study, we performed a screening for mycoviruses of a collection of Thai isolates of rice fungal pathogen Rhizoctonia oryzae-sativae, a causal agent of rice aggregated sheath spot disease. As a result, 36% of tested isolates carried potentially viral double-stranded RNAs with sizes ranging from 2 to 3 kbp. By conventional cDNA library construction and RNA-seq, we determined six new alphapartitiviruses that infected three isolates: tentatively named Rhizoctonia oryzae-sativae partitivirus 1 to 6 (RosPV1-6). Furthermore, RT-PCR detection of each virus revealed their omnipresent nature in different R. oryzae-sativae isolates. Although virus-curing of basidiomycetous fungi is generally difficult, our repeated attempts successfully obtained virus-free (for RosPV1, RosPV2, and uncharacterized partitiviruses), isogenic strain of R. oryzae-sativae TSS190442. The virus-cured strain showed slightly faster colony growth on the synthetic media and severe symptom development on the rice sheath compared to its virus-infected counterpart. Overall, this study shed light on the distribution of partitiviruses in R. oryzae-sativae in a paddy environment and exemplified a virus-curing protocol that may be applicable for other basidiomycetous fungi.


Assuntos
Basidiomycota/virologia , Vírus de RNA de Cadeia Dupla/isolamento & purificação , Micovírus/isolamento & purificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Basidiomycota/isolamento & purificação , Basidiomycota/patogenicidade , Vírus de RNA de Cadeia Dupla/classificação , Vírus de RNA de Cadeia Dupla/genética , Micovírus/classificação , Micovírus/genética , Genoma Viral/genética , Filogenia , RNA Viral/genética , Tailândia , Proteínas Virais/genética , Virulência
8.
Mol Biol Rep ; 48(12): 7921-7932, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655406

RESUMO

BACKGROUND: Sporisorium scitamineum is the causative agent of smut disease in sugarcane. The tricky life cycle of S. scitamineum consists of three distinct growth stages: diploid teliospores, haploid sporidia and dikaryotic mycelia. Compatible haploid sporidia representing opposite mating types (MAT-1 and MAT-2) of the fungus fuse to form infective dikaryotic mycelia in the host tissues, leading to the development of a characteristic whip shaped sorus. In this study, the transition of distinct stages of in vitro life cycle and in planta developmental stages of S. scitamineum are presented by generating stable GFP transformants of S. scitamineum. METHODS AND RESULTS: Haploid sporidia were isolated from the teliospores of Ss97009, and the opposite mating types (MAT-1 and MAT-2) were identified by random mating assay and mating type-specific PCR. Both haploid sporidia were individually transformed with pNIIST plasmid, harboring an enhanced green fluorescent protein (eGFP) gene and hygromycin gene by a modified protoplast-based PEG-mediated transformation method. Thereafter, the distinct in vitro developmental stages including fusion of haploid sporidia and formation of dikaryotic mycelia expressing GFP were demonstrated. To visualize in planta colonization, transformed haploids (MAT-1gfp and MAT-2gfp) were fused and inoculated onto the smut susceptible sugarcane cultivar, Co 97009 and examined microscopically at different stages of colonization. GFP fluorescence-based analysis presented an extensive fungal colonization of the bud surface as well as inter- and intracellular colonization of the transformed S. scitamineum in sugarcane tissues during initial stages of disease development. Noticeably, the GFP-tagged S. scitamineum led to the emergence of smut whips, which established their pathogenicity, and demonstrated initial colonization, active sporogenesis and teliospore maturation stages. CONCLUSION: Overall, for the first time, an efficient protoplast-based transformation method was employed to depict clear-cut developmental stages in vitro and in planta using GFP-tagged strains for better understanding of S. scitamineum life cycle development.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Saccharum/crescimento & desenvolvimento , Saccharum/genética , Basidiomycota/metabolismo , Basidiomycota/patogenicidade , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/microbiologia , Protoplastos , Saccharum/microbiologia , Transcriptoma/genética
9.
PLoS One ; 16(10): e0259171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699568

RESUMO

Plant associated microbiomes are known to confer fitness advantages to the host. Understanding how plant factors including biochemical traits influence host associated microbiome assembly could facilitate the development of microbiome-mediated solutions for sustainable plant production. Here, we examined microbial community structures of a set of well-characterized Arabidopsis thaliana mutants disrupted in metabolic pathways for the production of glucosinolates, flavonoids, or a number of defense signalling molecules. A. thaliana lines were grown in a natural soil and maintained under greenhouse conditions for 4 weeks before collection of roots for bacterial and fungal community profiling. We found distinct relative abundances and diversities of bacterial and fungal communities assembled in the individual A. thaliana mutants compared to their parental lines. Bacterial and fungal genera were mostly enriched than depleted in secondary metabolite and defense signaling mutants, except for flavonoid mutations on fungi communities. Bacterial genera Azospirillum and Flavobacterium were significantly enriched in most of the glucosinolate, flavonoid and signalling mutants while the fungal taxa Sporobolomyces and Emericellopsis were enriched in several glucosinolates and signalling mutants. Whilst the present study revealed marked differences in microbiomes of Arabidopsis mutants and their parental lines, it is suggestive that unknown enzymatic and pleiotropic activities of the mutated genes could contribute to the identified host-associated microbiomes. Notwithstanding, this study revealed interesting gene-microbiota links, and thus represents valuable resource data for selecting candidate A. thaliana mutants for analyzing the links between host genetics and the associated microbiome.


Assuntos
Flavonoides/metabolismo , Glucosinolatos/metabolismo , Microbiota , Raízes de Plantas/metabolismo , Arabidopsis , Azospirillum/patogenicidade , Basidiomycota/patogenicidade , Flavobacterium/patogenicidade , Flavonoides/genética , Genes de Plantas , Glucosinolatos/genética , Mutação , Raízes de Plantas/genética , Raízes de Plantas/microbiologia
10.
Pak J Biol Sci ; 24(5): 588-598, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34486334

RESUMO

<b>Background and Objective:</b> Coffee leaf rust disease caused by <i>Hemileia vastatrix</i> resulted in high yield loss and difficult to control. Several chemical fungicides have been used to control this disease. However, the effectiveness of chemical control is low, so it is necessary to find other methods such as biological control. <i>Lecanicillium</i> spp. is well-known as mycoparasite on <i>H. vastatrix</i> uredospores but the study in Indonesia is still limited. This study aimed to collect and investigated the genetic variability of <i>Lecanicillium</i> spp. at various coffee plantations in Indonesia. <b>Materials and Methods:</b> Samples of <i>Lecanicillium </i>spp. were collected from 20 districts in 7 provinces throughout Indonesia. Morphology of colony and conidia were identified by visual examination and by viewed under the light microscope. Genetic variability was conducted using Rep-PCR and clustered with UPGMA. <b>Results:</b> Morphological observation in this study revealed all isolates collected from uredospores of <i>H. vastatrix</i> were similar with <i>Lecanicillium </i>spp. Genetic variability analysis clustered the 80 isolates into eight clusters with their specific characters. <b>Conclusion:</b> Morphological identification in this study showed that 80 isolates of mycoparasite on <i>H. vastatrix</i> belong to <i>Lecanicillium</i> spp. Further study using the molecular technique is needed to identity the species of <i>Lecanicillium</i>.


Assuntos
Basidiomycota/patogenicidade , Café/efeitos dos fármacos , Hypocreales/isolamento & purificação , Extratos Vegetais/farmacologia , Basidiomycota/metabolismo , Hypocreales/metabolismo , Indonésia , Extratos Vegetais/uso terapêutico
11.
Sci Rep ; 11(1): 18270, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521867

RESUMO

Trichosporon asahii is a pathogenic fungus that causes severe, deep-seated fungal infections in neutropenic patients. Elucidating the infection mechanisms of T. asahii based on genetic studies requires a specific gene-targeting system. Here, we established an efficient gene-targeting system in a highly pathogenic T. asahii strain identified using the silkworm infection model. By comparing the pathogenicity of T. asahii clinical isolates in a silkworm infection model, T. asahii MPU129 was identified as a highly pathogenic strain. Using an Agrobacterium tumefaciens-mediated gene transfer system, we obtained a T. asahii MPU129 mutant lacking the ku70 gene, which encodes the Ku70 protein involved in the non-homologous end-joining repair of DNA double-strand breaks. The ku70 gene-deficient mutant showed higher gene-targeting efficiency than the wild-type strain for constructing a mutant lacking the cnb1 gene, which encodes the beta-subunit of calcineurin. The cnb1 gene-deficient mutant showed reduced pathogenicity against silkworms compared with the parental strain. These results suggest that an efficient gene-targeting system in a highly pathogenic T. asahii strain is a useful tool for elucidating the molecular mechanisms of T. asahii infection.


Assuntos
Basidiomycota/genética , Tricosporonose/microbiologia , Animais , Basidiomycota/patogenicidade , Bombyx/microbiologia , Modelos Animais de Doenças , Marcação de Genes/métodos , Genes Fúngicos/genética , Humanos
12.
Braz J Microbiol ; 52(4): 2085-2089, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34545554

RESUMO

Fungal infections are responsible for high morbidity and mortality in neonatal patients, especially in premature newborns. Infections in neonates caused by Cryptococcus spp. are rare, but it has occurred in an immunocompromised population. This study aims to describe the isolation of Cryptococcus liquefaciens from the hands of a health professional in a neonatal intensive care unit, and to evaluate the production of biofilm and virulence factors and susceptibility to antifungals. Antifungal susceptibility tests were performed according to Clinical and Laboratory Standard Institute document M27-A3. Thermotolerance virulence factors and DNase, phospholipase, proteinase, and hemolytic activities were verified through phenotypic tests; biofilm was evaluated by determining the metabolic activity and biomass. The isolate did not produce any of the tested enzymes and was susceptible to all antifungals (amphotericin B, fluconazole, and micafungin). The growth at 37 °C was very weak; however, the isolate showed a strong biomass production and low metabolic activity. This is the first report of C. liquefaciens isolated from the hands of a health professional. The isolate did not express any of the studied virulence factors in vitro, except for the low growth at 37 °C in the first 48 h, and the strong production of biofilm biomass. Cryptococcus liquefaciens can remain in the environment for a long time and is a human pathogen because it tolerates temperature variations. This report draws attention to the circulation of rare species in critical locations, information that may help in a fast and correct diagnosis and, consequently, implementation of an appropriate treatment.


Assuntos
Basidiomycota , Unidades de Terapia Intensiva Neonatal , Antifúngicos/farmacologia , Basidiomycota/isolamento & purificação , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Fluconazol/farmacologia , Pessoal de Saúde , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Fatores de Virulência/genética
13.
BMC Plant Biol ; 21(1): 360, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362300

RESUMO

BACKGROUND: Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. RESULTS: In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. CONCLUSIONS: The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


Assuntos
Basidiomycota/patogenicidade , Ciclopentanos/metabolismo , Dendrobium/microbiologia , Oxilipinas/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Acetatos/farmacologia , Ciclopentanos/farmacologia , Dendrobium/efeitos dos fármacos , Dendrobium/imunologia , Dendrobium/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas/farmacologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Transdução de Sinais/genética
14.
Plant Sci ; 310: 110973, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315591

RESUMO

TaLHY is an MYB transcription factor (TF) that is upregulated by salicylic acid induction and shows circadian rhythms. However, the study of the upstream regulatory factors is still unclear. In this study, we cloned the promoter sequence of the TaLHY homologous genes, verified the activity of the promoters, and identified important regions that affect promoter activity. Furthermore, we explored a possible upstream regulator of TaLHY, named TaWRKY10, which played a key role in the expression of TaLHY. We found that the three promoters pTaLHYa, pTaLHYb, and pTaLHYd had transcriptional activity in wheat protoplasts. All three promoters have W-Box, which can bind to WRKY TFs. Using virus-induced gene silencing (VIGS), after silencing TaWRKY10, the resistance of ChuanNong 19 (CN19) to stripe rust pathogen strain CYR32 was lost, and the expression level of the TaLHY homologous gene decreased. At the same time, in wheat protoplasts, the transcriptional activity of TaLHY homologous promoters improved after TaWRKY10 overexpression. This indicates that TaWRKY10 is a key gene for wheat immune response to stripe rust, and this gene may bind to TaLHYa, TaLHYb, and TaLHYd promoters to regulate the expression of TaLHY.


Assuntos
Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Basidiomycota/patogenicidade , Resistência à Doença/genética , Resistência à Doença/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética
15.
PLoS Pathog ; 17(6): e1009641, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166468

RESUMO

Biotrophic plant pathogens secrete effector proteins to manipulate the host physiology. Effectors suppress defenses and induce an environment favorable to disease development. Sequence-based prediction of effector function is impeded by their rapid evolution rate. In the maize pathogen Ustilago maydis, effector-coding genes frequently organize in clusters. Here we describe the functional characterization of the pleiades, a cluster of ten effector genes, by analyzing the micro- and macroscopic phenotype of the cluster deletion and expressing these proteins in planta. Deletion of the pleiades leads to strongly impaired virulence and accumulation of reactive oxygen species (ROS) in infected tissue. Eight of the Pleiades suppress the production of ROS upon perception of pathogen associated molecular patterns (PAMPs). Although functionally redundant, the Pleiades target different host components. The paralogs Taygeta1 and Merope1 suppress ROS production in either the cytoplasm or nucleus, respectively. Merope1 targets and promotes the auto-ubiquitination activity of RFI2, a conserved family of E3 ligases that regulates the production of PAMP-triggered ROS burst in plants.


Assuntos
Basidiomycota/fisiologia , Basidiomycota/patogenicidade , Proteínas Fúngicas/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Virulência/fisiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
16.
Nat Microbiol ; 6(6): 722-730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33941900

RESUMO

Plant pathogenic fungi colonizing living plant tissue secrete a cocktail of effector proteins to suppress plant immunity and reprogramme host cells. Although many of these effectors function inside host cells, delivery systems used by pathogenic bacteria to translocate effectors into host cells have not been detected in fungi. Here, we show that five unrelated effectors and two membrane proteins from Ustilago maydis, a biotrophic fungus causing smut disease in corn, form a stable protein complex. All seven genes appear co-regulated and are only expressed during colonization. Single mutants arrest in the epidermal layer, fail to suppress host defence responses and fail to induce non-host resistance, two reactions that likely depend on translocated effectors. The complex is anchored in the fungal membrane, protrudes into host cells and likely contacts channel-forming plant plasma membrane proteins. Constitutive expression of all seven complex members resulted in a surface-exposed form in cultured U. maydis cells. As orthologues of the complex-forming proteins are conserved in smut fungi, the complex may become an interesting fungicide target.


Assuntos
Basidiomycota/metabolismo , Basidiomycota/patogenicidade , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Virulência , Zea mays/microbiologia
17.
BMC Plant Biol ; 21(1): 215, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985437

RESUMO

BACKGROUND: Ginseng rusty root symptoms (GRS) is one of the primary diseases of ginseng. This disease leads to a severe decline in the quality of ginseng. It has been shown that the occurrence of GRS is associated with soil environmental degradation, which may involve changes in soil microbiology and physicochemical properties. RESULTS: In this study, GRS and healthy ginseng (HG) samples were used as experimental materials for comparative analysis of transcriptome and metabolome. Compared with those in HG samples, 949 metabolites and 9451 genes were significantly changed at the metabolic and transcriptional levels in diseased samples. The diseased tissues' metabolic patterns changed, and the accumulation of various organic acids, alkaloids, alcohols and phenols in diseased tissues increased significantly. There were significant differences in the expression of genes involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the peroxidase pathway, and the plant-pathogen interaction pathway. CONCLUSION: The current study involved a comparative metabolome and transcriptome analysis of GRS and HG samples. Based on the findings at the transcriptional and metabolic levels, a mechanism model of the ginseng response to GRS was established. Our results provide new insights into ginseng's response to GRS, which will reveal the potential molecular mechanisms of this disease in ginseng.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Panax/genética , Panax/imunologia , Panax/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , China , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Metaboloma , Raízes de Plantas/microbiologia , Plantas Medicinais/genética , Plantas Medicinais/microbiologia
18.
J Appl Genet ; 62(3): 431-439, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33990930

RESUMO

Triticale (× Triticosecale Wittmack) is a commercial hybrid harboring wheat (Triticum sp.) and rye (Secale cereale L.) genomes. The limited genetic diversity of this crop resulted in the collapse of fungal disease resistance. Leaf rust disease, caused by Puccinia triticina Eriks., is reported to reduce the triticale yield significantly (more than 30%). There is a need to enlarge the genetic variability of this crop including leaf resistance genes. The main aim of this research was to evaluate the leaf rust resistance of the offspring of translocation lines of triticale carrying chromatin of Ae. tauschii and Ae. kotschyi. A reaction of seedlings of 200 plants of two triticale-Aegilops translocation lines (Bogo-2Dt.2R and Sekundo-2Sk.2R) was compared after inoculation with a natural mixture of P. triticina races, specific to triticale in controlled condition. Before inoculation, each plant was screened using molecular cytogenetics and molecular markers linked to leaf rust resistance genes. The presence of Aegilops chromosome segments was confirmed using genomic in situ hybridization (GISH). Lr39 and Lr54 leaf rust resistance genes were identified using Xgdm35 and S14 molecular markers, respectively. After inoculation, a significant improvement of resistance severity was observed in Sekundo-2Sk.2R in comparison with triticale cv. Sekundo plants. The resistance level of Bogo-2Dt.2R did not differ compared with triticale cv. Bogo plants. It was shown that Lr39 gene did not increase the leaf rust resistance level of triticale cv. Bogo.


Assuntos
Aegilops , Basidiomycota , Resistência à Doença/genética , Doenças das Plantas/genética , Triticale , Aegilops/genética , Basidiomycota/patogenicidade , Cromossomos de Plantas , Genes de Plantas , Doenças das Plantas/microbiologia , Triticale/genética , Triticale/microbiologia
19.
PLoS One ; 16(5): e0243675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999918

RESUMO

Durum wheat is an important cereal grown in Ethiopia, a country which is also its center for genetic diversity. Yellow (stripe) rust caused by Puccinia striiformis fsp tritici is one of the most devastating diseases threatening Ethiopian wheat production. To identify sources of genetic resistance and combat this pathogen, we conducted a genome wide association study of yellow rust resistance on 300 durum wheat accessions comprising 261 landraces and 39 cultivars. The accessions were evaluated for their field resistance using a modified Cobb scale at Meraro, Kulumsa and Chefe Donsa in the 2015 and 2016 main growing seasons. Analysis of the 35K Axiom Array genotyping data of the panel resulted in a total of 8,797 polymorphic SNPs of which 7,093 were used in subsequent analyses. Population structure analysis suggested two groups in which the cultivars clearly stood out separately from the landraces. Eleven SNPs significantly associated with yellow rust resistance were identified on four chromosomes (1A, 1B, 2B, and 5A) which defined at least five genomic loci. Six of the SNPs were consistently identified on chromosome 1B singly at each and combined overall environments which explained 62.6-64.0% of the phenotypic variation (R2). Resistant allele frequency ranged from 14.0-71.0%; Zooming in to the identified resistance loci revealed the presence of disease resistance related genes involved in the plant defense system such as the ABC transporter gene family, disease resistance protein RPM1 (NBS-LRR class), Receptor kinases and Protein kinases. This study has provided SNPs for tracking the loci associated with yellow rust resistance and a diversity panel which can be used for association study of other agriculturally important traits in durum wheat.


Assuntos
Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Triticum/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Frequência do Gene/genética , Genoma de Planta/genética , Genótipo , Desequilíbrio de Ligação/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
20.
Theor Appl Genet ; 134(7): 2197-2211, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33791822

RESUMO

Key message The stripe rust resistance gene Yr34 was transferred to polyploid wheat chromosome 5AL from T. monococcum and has been used for over two centuries.Wheat stripe (or yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is currently among the most damaging fungal diseases of wheat worldwide. In this study, we report that the stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal segment of the cultivated Triticum monococcum subsp. monococcum chromosome 5AmL translocated to chromosome 5AL in polyploid wheat. The diploid wheat species Triticum monococcum (genome AmAm) is closely related to T. urartu (donor of the A genome to polyploid wheat) and has good levels of resistance against the stripe rust pathogen. When present in hexaploid wheat, the T. monococcum Yr34 resistance gene confers a moderate level of resistance against virulent Pst races present in California and the virulent Chinese race CYR34. In a survey of 1,442 common wheat genotypes, we identified 5AmL translocations of fourteen different lengths in 17.5% of the accessions, with higher frequencies in Europe than in other continents. The old European wheat variety "Mediterranean" was identified as a putative source of this translocation, suggesting that Yr34 has been used for over 200 years. Finally, we designed diagnostic CAPS and sequenced-based markers that will be useful to accelerate the deployment of Yr34 in wheat breeding programs to improve resistance to this devastating pathogen.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Genes de Plantas , Marcadores Genéticos , Genótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Poliploidia , Recombinação Genética , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...